Direct differential gradient method
Climbing hill method
@
Objective function: ZQ = CX2 * X ^ 2 + CY2 * Y ^ 2 + CX * X + CY * Y + CK
Constraint area: Nothing
Example 1
Objective function: Z = 9 * X ^ 2 + 4 * Y ^ 2 - 72 * X - 64 * Y
Objective function: ZQ |
|||||
CX2 |
CY2 |
CX |
CY |
CK |
|
Example 1 |
9 |
4 |
-72 |
-64 |
0 |
Make ZQ , Max, or, Min
Function of 1 step:
q = S * p
, where, p= grad(ZQ), that is,
= [ƒÂz/ƒÂx , ƒÂz/ƒÂy]
S = constant: Example 1: 0.001
Start point, X, Y: 0, 0
Epsilon for stop: EP = 0.00001,
Repeat times for stop: NN= 10000
Answer 1
ZQ = 9 * (X-4) ^ 2 + 4*(Y-8) ^ 2 - 400
ƒÂz/ƒÂx = 18*(X-4)
ƒÂz/ƒÂy = 8*(Y-8)
ZQ min = -400
@
@
X |
Y |
Z |
|||
Final value(Optimal value) |
4.00 |
8.00 |
400.00 |
||
Repeat times |
J = |
10001 |
See sgm-01.xls: sgm-1-a
@
Objective function: ZQ = CX2 * X ^ 2 + CY2 * Y ^ 2 + CX * X + CY * Y + CK
Constraint area: G = G (X, Y) = KX * X + KY * Y + KC <= 0
Example 2
Objective function: Z = 9 * X ^ 2 + 4 * Y ^ 2 - 72 * X - 64 * Y
Constraint area: G = 2 * X + Y - 8 <= 0
Objective function: ZQ |
|||||
CX2 |
CY2 |
CX |
CY |
CK |
|
Example 2 |
9 |
4 |
-72 |
-64 |
0 |
Constraint area: G
@ |
KX |
KY |
KC |
Example 2 |
2 |
1 |
-8 |
Make ZQ , Max, or, Min
q = S * p - u * r
where, p= grad(ZQ), that is,
= [
ƒÂZQ/ƒÂx, ƒÂZQ/ƒÂy]r = grad(G) , that is,
= [
ƒÂG/ƒÂx, ƒÂG/ƒÂy]u: u = 0 if G <= 0, u = G(X,Y) if G > 0
S = constant:
S = 0.001 if G <= 0,
S = 0 if G > 0
Answer 2
ZQ = 9 * (X-4) ^ 2 + 4*(Y-8) ^ 2 - 400
ƒÂz/ƒÂx = 18*(X-4)
ƒÂz/ƒÂy = 8*(Y-8)
ƒÂG/ƒÂx = 2
ƒÂG/ƒÂy = 1
X |
Y |
Z |
|||
Final value(Optimal value) |
1.44 |
5.12 |
307.84 |
||
Repeat times |
J = |
29395 |
see
sgm-01.xls: sgm-2-a2004/8/18