[PR] この広告は3ヶ月以上更新がないため表示されています。
ホームページを更新後24時間以内に表示されなくなります。
Optimization in farm work system
Coding by software (LP, etc.)
See TE2002.xls or Rice-sy1.xls
Coding by function of time
Fig. S-1. Flow chart of dynamic model
See reference 6.
Economical, ecological and healthy (metabolic energy index) benefit
Example 1.
Example 2.
We may test the model like machine experiment by Experiment Design.
Mesh type simulation: Example 3.
We may apply the analytical method like Steepest Gradient Method etc. Example 4 and 5.
Increment step: q = S * p
where, p= grad(C), that is, = [δC/δx , δC/δy], C = cost, S = constant, x and y = factor
We may use optimization method for sustainable farming system based on multi evaluation criteria including feeling evaluation method like AHP, CP etc. Example 6.
Rice production farming system in planning stage
FS01-J by EXCEL file (TE2002p1.xls)
Make total cost of the system minimum at 10 ha
Improvement by empirical knowledge by checking coverage etc. of each farm work
Process under Conditions: Farm scale = 10 ha
Stage |
Coverage (ha) |
Total cost at 10 ha ($/ha) |
Total cost at 10 ha ($) |
Cost ($) at CA |
|
1 |
First planning |
6.5 |
- |
6,116 |
|
2 |
By new combine |
13.3 |
5,149 |
51,490 |
4,685 |
3 |
By new sprayer 61 |
13.3 |
5,190 |
51,900 |
4,706 |
4 |
By new sprayer 62 |
13.3 |
5,137 |
51,370 |
4,680 |
Input new combine with machine code 71
Replace machine code from 7 to 71 at sheet [step-2], [Machinery-cost]
EFC = EFCold * Wnew / Wold = 0.06 * (3^2) / (2^2) = 0.09 ha/h [Field capacity]
FRh = FRh * HPnew / HPold = 1.33 * 20 /15 = 1.77 L/h [Variable-cost]
Total cost at 10 ha ($) = 51,490
-------------------------------------------
Input new sprayer with machine code 61
Replace machine code from 6 to 61 at sheet [step-2] , [Machinery-cost]
EFC = EFCold * Wnew / Wold = 0.53 * (20) / (40) = 0.27 ha/h [Field capacity]
20,40 L/min
FRh = FRh * HPnew / HPold = 0.26 * 20 /40 = 0.13 L/h [Variable-cost]
Total cost at 10 ha ($) = 51,190 : This is more than before, that is, smaller machine is not always less cost than larger one.
-------------------------------------------
Input new sprayer with machine code 62
Replace machine code from 61 to 62at sheet [step-2] , [Machinery-cost]
EFC = EFCold * Wnew / Wold = 0.53 * (30) / (40) = 0.40 ha/h [Field capacity]
30,40 L/min
FRh = FRh * HPnew / HPold = 0.26 * 30 /40 = 0.20 L/h [Variable-cost]
Total cost at 10 ha ($) = 51,370 : This is less than before.
-------------------------------------------
Select combine by using farm work database.
Farm scale |
Cost per ha (ACa: $/ha) |
||||||
Head feeding riding type combine |
Normal combine |
||||||
ID |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
A: ha |
3 row |
4 row |
5 row |
6 row |
1.5m |
2.4m |
3.0m |
1 |
7,606 |
11,393 |
12,959 |
18,537 |
8,722 |
23,795 |
25,837 |
2 |
3,931 |
5,794 |
6,559 |
9,336 |
4,469 |
11,973 |
12,972 |
3 |
2,705 |
3,927 |
4,425 |
6,269 |
3,051 |
8,033 |
8,684 |
4 |
2,093 |
2,994 |
3,358 |
4,735 |
2,342 |
6,062 |
6,540 |
5 |
1,725 |
2,434 |
2,718 |
3,815 |
1,917 |
4,880 |
5,254 |
10 |
990 |
1,314 |
1,438 |
1,975 |
1,066 |
2,516 |
2,681 |
15 |
745 |
940 |
1,011 |
1,361 |
783 |
1,728 |
1,823 |
20 |
622 |
754 |
798 |
1,055 |
641 |
1,334 |
1,394 |
25 |
549 |
642 |
670 |
871 |
556 |
1,097 |
1,137 |
30 |
500 |
567 |
584 |
748 |
499 |
940 |
965 |
Coverage of combine
3 row |
4 row |
5 row |
6 row |
1.5m |
2.4m |
3.0m |
|
CA: ha |
15.4 |
20.5 |
25.6 |
30.7 |
20.5 |
25.6 |
30.7 |
Combine selected for each farm scale
Farm scale: A (ha) |
Combine selected |
1 |
Head feeding type 3 row |
10 |
Head feeding type 3 row |
20 |
Head feeding type 4 row |
30 |
Head feeding type 6 row |
See DB-FW.XLS
Rice production farming system in improving stage
FS01-J by EXCEL file (TE2002p3.xls sheet-simulation)
Make Total profit(P) maximum
P = Total sale - Total cost + Capital remained
Apply Simulation: Experiment in computer by Experiment Design
Assume we can invest $10,000 in the farming system, and starting coverage 6.5 ha, and profit is 39,364$ at coverage.
X = Land rent ($), Y = Purchase machine (combine) ($) and X + Y =< 10,000
Level of X and Y are 2,000, 4,000, 6,000, 8,000, 10,000.
symbol |
term |
default |
simulation |
unit |
dX |
Mesh of X |
1,000 |
2,000 |
$ |
dY |
Mesh of Y |
1,000 |
2,000 |
$ |
LR |
Land rent |
585 |
585 |
$/ha |
dL |
Land area by 1 $ |
0.00171 |
ha/$ |
|
dE |
EFC increase by 1000 $ |
0.00796 |
(ha/h) / 1000$ |
|
CAP |
Capital initial |
10,000 |
10,000 |
$ |
Ainitial |
Land initial |
6.5 |
6.5 |
ha |
PRinitial |
Profit initial |
39,375 |
39,375 |
$ |
CAinitial |
Coverage initial |
6.5 |
6.5 |
ha |
EFC |
Effective field capacity |
0.06 |
0.06 |
ha/h |
P |
Total Profit |
49,375 |
49,375 |
$ |
X |
Invest to land |
$ |
||
Y |
Invest to machine |
$ |
X: $ |
0 |
2,000 |
4,000 |
6,000 |
8,000 |
10,000 |
A: ha |
6.50 |
9.92 |
13.34 |
16.76 |
20.18 |
23.59 |
EFC = EFCinitial +dE * Y / 1000
CA = CAinitial * EFC /EFCinitial
Y: $ |
0 |
2,000 |
4,000 |
6,000 |
8,000 |
10,000 |
EFC: ha/h |
0.060 |
0.076 |
0.092 |
0.108 |
0.124 |
0.140 |
CA: ha |
6.50 |
8.22 |
9.95 |
11.67 |
13.40 |
15.12 |
PR by EXCEL
input EFCnew and Anew at sheet [field capacity] in this color
IF CA>A, obtain PRnew of at A at sheet[Summary-fw-system]
IF CA<A, obtain PRnew of at CA at sheet[Summary-fw-system]
Y: $ |
||||||
X: $ |
0 |
2,000 |
4,000 |
6,000 |
8,000 |
10,000 |
0 |
39,375 |
40,131 |
40,425 |
40,632 |
40,785 |
40,904 |
2,000 |
39,375 |
54,640 |
69,905 |
70,444 |
70,678 |
70,859 |
4,000 |
39,375 |
54,640 |
69,905 |
85,169 |
99,872 |
100,114 |
6,000 |
39,375 |
54,640 |
69,905 |
85,169 |
99,872 |
100,114 |
8,000 |
39,375 |
54,640 |
69,905 |
85,169 |
99,872 |
100,114 |
10,000 |
39,375 |
54,640 |
69,905 |
85,169 |
99,872 |
100,114 |
P = Total sale - Total cost + Capital remained
P = PR + CAP - X - Y
Y: $ |
||||||
X: $ |
0 |
2,000 |
4,000 |
6,000 |
8,000 |
10,000 |
0 |
49,375 |
48,131 |
46,425 |
44,632 |
42,785 |
40,904 |
2,000 |
47,375 |
60,640 |
73,905 |
72,444 |
70,678 |
68,859 |
4,000 |
45,375 |
58,640 |
71,905 |
85,169 |
97,872 |
96,114 |
6,000 |
43,375 |
56,640 |
69,905 |
83,169 |
95,872 |
94,114 |
8,000 |
41,375 |
54,640 |
67,905 |
81,169 |
93,872 |
92,114 |
10,000 |
39,375 |
52,640 |
65,905 |
79,169 |
91,872 |
90,114 |
Pmax (Mesh = 2000): Maximum profit = 85,169 $
Y: $ |
||||||
X: $ |
5,000 |
5,500 |
6,000 |
6,500 |
7,000 |
7,500 |
2,500 |
80,200 |
79,777 |
79,353 |
78,924 |
78,489 |
78,051 |
3,000 |
79,733 |
82,853 |
86,169 |
85,926 |
85,497 |
85,063 |
3,500 |
79,233 |
82,353 |
85,669 |
88,985 |
92,302 |
91,988 |
4,000 |
78,733 |
81,853 |
85,169 |
88,485 |
91,802 |
95,118 |
4,500 |
78,233 |
81,353 |
84,669 |
87,985 |
91,302 |
94,618 |
5,000 |
77,733 |
80,853 |
84,169 |
87,485 |
90,802 |
94,118 |
Pmax (Mesh = 500): Maximum profit = 88,985 $
Pmax (Mesh = 100): Maximum profit = 89,949 $
Rice production farming system in improving stage
FS01-J by EXCEL file (TE2002p3.xls sheet SGM)
Make Total profit(P) maximum
P = Total sale - Total cost + Capital remained
Assume we can invest $10,000 in the farming system, and starting coverage 6.5 ha, and profit is 39,375$ at starting point.
X = Land rent ($), Y = Purchase combine ($) and G = X + Y - 10,000 =< 0
Seek steepest gradient by setting dX and dY as followings:
Conditions and factors:
symbol |
term |
default |
simulation |
unit |
dX |
Incremnt X |
1,000 |
1,000 |
$ |
dY |
Incremnt Y |
1,000 |
1,000 |
$ |
S |
Constant S |
0.001 |
0.001 |
|
LR |
Land rent |
585 |
585 |
$/ha |
dL |
Land area by 1 $ |
0.00171 |
ha/$ |
|
dE |
EFC increase by 1000 $ |
0.00796 |
(ha/h) / 1000$ |
|
CAP |
Capital initial |
10,000 |
10,000 |
$ |
Ainitial |
Land initial |
6.5 |
6.5 |
ha |
PRinitial |
Profit initial |
39,375 |
39,375 |
$ |
CAinitial |
Coverage initial |
6.5 |
6.5 |
ha |
EFC |
Effective field capacity |
0.06 |
0.06 |
ha/h |
P |
Total Profit |
49,375 |
49,375 |
$ |
X |
Invest to land |
$ |
||
Y |
Invest to machine |
$ |
||
dP |
Increment P |
$ |
||
Pmax |
Maximum profit |
88,436 |
$ |
EFC = EFCinitial +dE * Y / 1000
CA = CAinitial * EFC /EFCinitial
Pmax: Maximum profit = 88,436 $
Pmax: Maximum profit = 89,905 $
Land invest |
Machine invest |
Land rent |
Machine |
Land area |
Coverage |
Machine |
Profit |
Total profit |
Increment P |
Select |
Constraint G |
|
dX |
dY |
X |
Y |
A |
CA |
EFC |
PR |
P |
dP |
G |
||
$ |
$ |
$ |
$ |
ha |
ha |
ha/h |
$ |
$ |
$ |
|||
Initial |
0 |
0 |
0 |
0 |
6.50 |
6.50 |
0.06 |
39,375 |
49,375 |
0 |
-10,000 |
|
1a |
1000 |
0 |
1,000 |
0 |
8.21 |
6.50 |
0.060 |
39,375 |
48,375 |
-1,000 |
-9,000 |
|
1b |
600 |
400 |
600 |
400 |
7.53 |
6.84 |
0.063 |
42,428 |
51,428 |
2,053 |
-9,000 |
|
1c |
400 |
600 |
400 |
600 |
7.18 |
7.02 |
0.065 |
43,955 |
52,955 |
3,580 |
* |
-9,000 |
1d |
0 |
1000 |
0 |
1,000 |
6.50 |
7.36 |
0.068 |
39,375 |
48,375 |
-1,000 |
-9,000 |
|
1 |
400 |
600 |
400 |
600 |
7.18 |
7.02 |
0.065 |
43,955 |
52,955 |
-9,000 |
||
2a |
1000 |
0 |
1,400 |
600 |
8.89 |
7.02 |
0.065 |
43,955 |
51,955 |
-1,000 |
-8,000 |
|
2b |
600 |
400 |
1,000 |
1,000 |
8.21 |
7.36 |
0.068 |
47,008 |
55,008 |
2,053 |
-8,000 |
|
2c |
400 |
600 |
800 |
1,200 |
7.87 |
7.53 |
0.070 |
48,534 |
56,534 |
3,579 |
* |
-8,000 |
2d |
0 |
1000 |
400 |
1,600 |
7.18 |
7.88 |
0.073 |
45,835 |
53,835 |
880 |
-8,000 |
|
2 |
400 |
600 |
800 |
1,200 |
7.87 |
7.53 |
0.070 |
48,534 |
56,534 |
-8,000 |
||
3 |
||||||||||||
4 |
||||||||||||
5 |
||||||||||||
6 |
||||||||||||
7 |
||||||||||||
8 |
400 |
600 |
2,800 |
5,200 |
11.29 |
10.98 |
0.1014 |
79,063 |
81,063 |
-2,000 |
||
9a |
1000 |
0 |
3,800 |
5,200 |
13.00 |
10.98 |
0.101 |
79,063 |
80,063 |
-1,000 |
-1,000 |
|
9b |
600 |
400 |
3,400 |
5,600 |
12.31 |
11.33 |
0.105 |
82,116 |
83,116 |
2,053 |
-1,000 |
|
9c |
400 |
600 |
3,200 |
5,800 |
11.97 |
11.50 |
0.106 |
83,643 |
84,643 |
3,580 |
* |
-1,000 |
9d |
0 |
1000 |
2,800 |
6,200 |
11.29 |
11.85 |
0.109 |
82,416 |
83,416 |
2,353 |
-1,000 |
|
9 |
400 |
600 |
3,200 |
5,800 |
11.97 |
11.50 |
0.1062 |
83,643 |
84,643 |
-1,000 |
||
10a |
1000 |
0 |
4,200 |
5,800 |
13.68 |
11.50 |
0.106 |
83,643 |
83,643 |
-1,000 |
0 |
|
10b |
600 |
400 |
3,800 |
6,200 |
13.00 |
11.85 |
0.109 |
86,696 |
86,696 |
2,053 |
0 |
|
10c |
400 |
600 |
3,600 |
6,400 |
12.65 |
12.02 |
0.111 |
88,282 |
88,282 |
3,639 |
0 |
|
10d |
0 |
1000 |
3,200 |
6,800 |
11.97 |
12.36 |
0.114 |
88,436 |
88,436 |
3,793 |
* |
0 |
10 |
0 |
1000 |
3,200 |
6,800 |
11.97 |
12.36 |
0.1141 |
88,436 |
88,436 |
0 |
dX |
dY |
X |
Y |
A |
CA |
EFC |
PR |
P |
dP |
G |
||
8 |
400 |
600 |
2,800 |
5,200 |
11.29 |
10.98 |
0.1014 |
79,063 |
81,063 |
-2,000 |
||
9a |
1000 |
0 |
3,800 |
5,200 |
13.00 |
10.98 |
0.101 |
79,063 |
80,063 |
-1,000 |
-1,000 |
|
9n |
800 |
200 |
3,600 |
5,400 |
12.65 |
11.16 |
0.103 |
80,590 |
81,590 |
527 |
-1,000 |
|
9c |
600 |
400 |
3,400 |
5,600 |
12.31 |
11.33 |
0.105 |
82,116 |
83,116 |
2,053 |
-1,000 |
|
9d |
400 |
600 |
3,200 |
5,800 |
11.97 |
11.50 |
0.106 |
83,643 |
84,643 |
3,580 |
-1,000 |
|
9e |
200 |
800 |
3,000 |
6,000 |
11.63 |
11.67 |
0.108 |
85,169 |
86,169 |
5,106 |
* |
-1,000 |
9f |
0 |
1000 |
2,800 |
6,200 |
11.29 |
11.85 |
0.109 |
82,416 |
83,416 |
2,353 |
-1,000 |
|
9 |
400 |
600 |
3,000 |
6,000 |
11.63 |
11.67 |
0.1078 |
85,169 |
86,169 |
-1,000 |
||
10a |
1000 |
0 |
4,000 |
6,000 |
13.34 |
11.67 |
0.108 |
83,643 |
83,643 |
-2,526 |
0 |
|
10b |
800 |
200 |
3,800 |
6,200 |
13.00 |
11.85 |
0.109 |
85,381 |
85,381 |
-788 |
0 |
|
10c |
600 |
400 |
3,600 |
6,400 |
12.65 |
12.02 |
0.111 |
86,696 |
86,696 |
527 |
0 |
|
10d |
400 |
600 |
3,400 |
6,600 |
12.31 |
12.19 |
0.113 |
88,282 |
88,282 |
2,113 |
0 |
|
10e |
300 |
700 |
3,300 |
6,700 |
12.14 |
12.28 |
0.113 |
89,905 |
89,905 |
3,736 |
* |
0 |
10f |
200 |
800 |
3,200 |
6,800 |
11.97 |
12.36 |
0.114 |
88,436 |
88,436 |
2,267 |
0 |
|
10g |
100 |
900 |
3,100 |
6,900 |
11.80 |
12.45 |
0.115 |
86,967 |
86,967 |
798 |
0 |
|
10h |
0 |
1000 |
3,000 |
7,000 |
11.63 |
12.54 |
0.116 |
85,497 |
85,497 |
-672 |
0 |
|
10 |
0 |
1000 |
3,300 |
6,700 |
12.14 |
12.28 |
0.1133 |
89,905 |
89,905 |
0 |
Make maximum the total profit of farm work system using simulation or Steepest Gradient System
Assume capital available 15,000 $ in FS-01-J
Assume we can invest $10,000 in the farming system, and starting coverage 6.5 ha, and profit is 39,375$ at starting point.
X = Land rent ($),
Y1 = Purchase machine 1 ($)
Y2 = Purchase machine 2 ($)
Y3 = Purchase machine 3 ($)
and X + Y1 + Y2 + Y3 =< 15,000
Term |
Land |
Machine 1: Combine |
Machine 2: Puddler |
Machine 3: |
dX |
dY1 |
dY2 |
dY3 |
|
Increment |
||||
Total profit ($) |
This is 4 dimensional problem, therefore, combination of these factors will increase tremendously.
B = k1 * Y1 + k2 * Y2 + k3 * Y3 + k4 * Y4 + k5 * Y5 + k6 * Y6 + k7 * Y7
where,
Symbol |
Term |
unit |
Example: Weight |
|
B |
Total benefit of system |
- |
||
Y1 |
Economical profit of system |
$ |
41 |
|
Y2 |
Ecological pollution of system |
kg |
11 |
|
Y3 |
Human health (Ergonomics) of system |
- |
13 |
|
Y4 |
Energetic evaluation |
- |
9 |
|
Y5 |
Cultural evaluation |
- |
7 |
|
Y6 |
Social evaluation |
- |
10 |
|
Y7 |
Political evaluation |
- |
9 |
|
Y1i |
Profit of system: initial or basic |
$ |
||
Y2i |
Ecological pollution of system: initial or basic |
kg |
||
Y3i |
Human health (Ergonomics) of system: ditto |
- |
||
Y4i etc. |
Initial or basic data, respectively |
- |
||
k1 |
Coefficient of Y1 |
1 / $ |
41 / Y1i |
|
k2 |
Coefficient of Y2 |
1 / kg |
11 / Y2i |
|
k3 |
Coefficient of Y3 |
- |
13 / Y3i |
|
k4 |
Coefficient of Y4 |
- |
9 / Y4i |
|
k5 |
Coefficient of Y5 |
- |
7 / Y5i |
|
k6 |
Coefficient of Y6 |
- |
10 / Y6i |
|
k7 |
Coefficient of Y7 |
- |
9 / Y7i |
Example TE2002.xls
We may evaluate CO2 input/output by CO2 gas generation ratio or photosynsesis.
Try to evaluate each work by feeling heavy or light
Example Rice-erg.xls
Normalization of B: by arranging weight of k1,k2,k3.
B will be changed by modifying Y1, Y2, , Y7.
Obtain maximum B.
2004/6/6