Optimization in farm work system

     

    1. Modeling
      1. Analytical model (Mathematical model)
      2. Coding by software (LP, etc.)

        1. Rice production farming system by Farm Mechanization Planning

        See TE2002.xls or Rice-sy1.xls

         

      3. Dynamic model
      4. Coding by function of time

        1. Rice production farming system by Dynamic model

      Fig. S-1. Flow chart of dynamic model

      See reference 6.

       

    2. Objective function
      1. Cost of the farm work system
      2. Profit of the farm work system
      3. Total benefit of the farm work system

      Economical, ecological and healthy (metabolic energy index) benefit

       

    3. Optimization
      1. Improvement by empirical knowledge
        1. By checking coverage etc. of each farm work
        2. Example 1.

        3. By using database

        Example 2.

      2. Simulation: Experiment in computer
      3. We may test the model like machine experiment by Experiment Design.

        Mesh type simulation: Example 3.

        1. Select variables
        2. Set function level of each variable
        3. Calculate objective function under above conditions
        4. Obtain optimal result

         

      4. Improvement step by step
      5. We may apply the analytical method like Steepest Gradient Method etc. Example 4 and 5.

        1. Steepest Gradient Method
          1. Analysis by differential equation
          2. Increment step: q = S * p

            where, p= grad(C), that is, = [δC/δx , δC/δy], C = cost, S = constant, x and y = factor

          3. Simulation of steepest gradient direction

           

        2. Hill climbing simplex method

         

      6. Optimization by multi evaluation criteria including feeling evaluation

      We may use optimization method for sustainable farming system based on multi evaluation criteria including feeling evaluation method like AHP, CP etc. Example 6.

       

       

       

    4. Exercise
      1. Example 1 by empirical knowledge
        1. Modeling
        2. Rice production farming system in planning stage

          FS01-J by EXCEL file (TE2002p1.xls)

        3. Objective function
        4. Make total cost of the system minimum at 10 ha

        5. Optimization
        6. Improvement by empirical knowledge by checking coverage etc. of each farm work

          Process under Conditions: Farm scale = 10 ha

           

          Stage

          Coverage (ha)

          Total cost at 10 ha ($/ha)

          Total cost at 10 ha ($)

          Cost ($) at CA

          1

          First planning

          6.5

          -

           

          6,116

          2

          By new combine

          13.3

          5,149

          51,490

          4,685

          3

          By new sprayer 61

          13.3

          5,190

          51,900

          4,706

          4

          By new sprayer 62

          13.3

          5,137

          51,370

          4,680

           

          1. Check coverage: 6.5 ha by 7-Harvest at sheet [Summary-fw-system]
          2. Replace machine: Combine from 2 row to 3 row at sheet [step 3]
          3. Input new combine with machine code 71

            Replace machine code from 7 to 71 at sheet [step-2], [Machinery-cost]

          4. Check price, EFC, FRh of new machine at sheet [step-3]
          5. EFC = EFCold * Wnew / Wold = 0.06 * (3^2) / (2^2) = 0.09 ha/h [Field capacity]

            FRh = FRh * HPnew / HPold = 1.33 * 20 /15 = 1.77 L/h [Variable-cost]

          6. Confirm new coverage of 7-Harvest = 14.5 ha from old 6.5 ha at sheet [Coverage]
          7. Total cost at 10 ha ($) = 51,490

            -------------------------------------------

          8. Check coverage again: 13.3 ha by 5-Caring crop is larger than 10 ha at sheet [Summary-fw-system]
          9. Search maximum excessive coverage: 35.1 ha by 6-Chemical application
          10. Replace machine in order to decrease the coverage: Sprayer from HP-2 toHp-17 at sheet [step 3]
          11. Input new sprayer with machine code 61

            Replace machine code from 6 to 61 at sheet [step-2] , [Machinery-cost]

          12. Check price, EFC, FRh of new machine at sheet [step-3]
          13. EFC = EFCold * Wnew / Wold = 0.53 * (20) / (40) = 0.27 ha/h [Field capacity]

            20,40 L/min

            FRh = FRh * HPnew / HPold = 0.26 * 20 /40 = 0.13 L/h [Variable-cost]

          14. Confirm new coverage = 17.9 ha from 35.1 ha of 6-Chemical application
          15. Total cost at 10 ha ($) = 51,190 : This is more than before, that is, smaller machine is not always less cost than larger one.

            -------------------------------------------

          16. Replace machine to increase the coverage little bit: Sprayer from HP-17 toHp-303 at sheet [step 3]
          17. Input new sprayer with machine code 62

            Replace machine code from 61 to 62at sheet [step-2] , [Machinery-cost]

          18. Check price, EFC, FRh of new machine at sheet [step-3]
          19. EFC = EFCold * Wnew / Wold = 0.53 * (30) / (40) = 0.40 ha/h [Field capacity]

            30,40 L/min

            FRh = FRh * HPnew / HPold = 0.26 * 30 /40 = 0.20 L/h [Variable-cost]

          20. Confirm new coverage = 26.5 ha from 35.1 ha of original 6-Chemical application

        Total cost at 10 ha ($) = 51,370 : This is less than before.

        -------------------------------------------

      2. Example 2 by using database
      3. Select combine by using farm work database.

        Farm scale

        Cost per ha (ACa: $/ha)

        Head feeding riding type combine

        Normal combine

        ID

        83

        84

        85

        86

        87

        88

        89

        A: ha

        3 row

        4 row

        5 row

        6 row

        1.5m

        2.4m

        3.0m

        1

        7,606

        11,393

        12,959

        18,537

        8,722

        23,795

        25,837

        2

        3,931

        5,794

        6,559

        9,336

        4,469

        11,973

        12,972

        3

        2,705

        3,927

        4,425

        6,269

        3,051

        8,033

        8,684

        4

        2,093

        2,994

        3,358

        4,735

        2,342

        6,062

        6,540

        5

        1,725

        2,434

        2,718

        3,815

        1,917

        4,880

        5,254

        10

        990

        1,314

        1,438

        1,975

        1,066

        2,516

        2,681

        15

        745

        940

        1,011

        1,361

        783

        1,728

        1,823

        20

        622

        754

        798

        1,055

        641

        1,334

        1,394

        25

        549

        642

        670

        871

        556

        1,097

        1,137

        30

        500

        567

        584

        748

        499

        940

        965

        Coverage of combine

        3 row

        4 row

        5 row

        6 row

        1.5m

        2.4m

        3.0m

        CA: ha

        15.4

        20.5

        25.6

        30.7

        20.5

        25.6

        30.7

        Combine selected for each farm scale

        Farm scale: A (ha)

        Combine selected

        1

        Head feeding type 3 row

        10

        Head feeding type 3 row

        20

        Head feeding type 4 row

        30

        Head feeding type 6 row

        See DB-FW.XLS

         

      4. Example 3 by mesh type simulation
        1. Modeling
        2. Rice production farming system in improving stage

          FS01-J by EXCEL file (TE2002p3.xls sheet-simulation)

        3. Objective function
        4. Make Total profit(P) maximum

          P = Total sale - Total cost + Capital remained

        5. Optimization
        6. Apply Simulation: Experiment in computer by Experiment Design

          1. Select variables and constraints
          2. Assume we can invest $10,000 in the farming system, and starting coverage 6.5 ha, and profit is 39,364$ at coverage.

            X = Land rent ($), Y = Purchase machine (combine) ($) and X + Y =< 10,000

          3. Set function level of each variable
          4. Level of X and Y are 2,000, 4,000, 6,000, 8,000, 10,000.

             

          5. List of conditions and constraint
          6. symbol

            term

            default

            simulation

            unit

            dX

            Mesh of X

            1,000

            2,000

            $

            dY

            Mesh of Y

            1,000

            2,000

            $

            LR

            Land rent

            585

            585

            $/ha

            dL

            Land area by 1 $

            0.00171

            ha/$

            dE

            EFC increase by 1000 $

            0.00796

            (ha/h) / 1000$

            CAP

            Capital initial

            10,000

            10,000

            $

            Ainitial

            Land initial

            6.5

            6.5

            ha

            PRinitial

            Profit initial

            39,375

            39,375

            $

            CAinitial

            Coverage initial

            6.5

            6.5

            ha

            EFC

            Effective field capacity

            0.06

            0.06

            ha/h

            P

            Total Profit

            49,375

            49,375

            $

            X

            Invest to land

            $

            Y

            Invest to machine

            $

             

          7. Calculate objective function under above conditions
          8. Step 1: Mesh = 2000
            1. Calculation land area: A A = Ainitial + dL * X
            2. X: $

              0

              2,000

              4,000

              6,000

              8,000

              10,000

              A: ha

              6.50

              9.92

              13.34

              16.76

              20.18

              23.59

            3. Calculation EFC and CA
            4. EFC = EFCinitial +dE * Y / 1000

              CA = CAinitial * EFC /EFCinitial

              Y: $

              0

              2,000

              4,000

              6,000

              8,000

              10,000

              EFC: ha/h

              0.060

              0.076

              0.092

              0.108

              0.124

              0.140

              CA: ha

              6.50

              8.22

              9.95

              11.67

              13.40

              15.12

            5. Calculation PR
            6. PR by EXCEL

              input EFCnew and Anew at sheet [field capacity] in this color

              IF CA>A, obtain PRnew of at A at sheet[Summary-fw-system]

              IF CA<A, obtain PRnew of at CA at sheet[Summary-fw-system]

              Y: $

              X: $

              0

              2,000

              4,000

              6,000

              8,000

              10,000

              0

              39,375

              40,131

              40,425

              40,632

              40,785

              40,904

              2,000

              39,375

              54,640

              69,905

              70,444

              70,678

              70,859

              4,000

              39,375

              54,640

              69,905

              85,169

              99,872

              100,114

              6,000

              39,375

              54,640

              69,905

              85,169

              99,872

              100,114

              8,000

              39,375

              54,640

              69,905

              85,169

              99,872

              100,114

              10,000

              39,375

              54,640

              69,905

              85,169

              99,872

              100,114

            7. Calculation P
            8. P = Total sale - Total cost + Capital remained

              P = PR + CAP - X - Y

              Y: $

              X: $

              0

              2,000

              4,000

              6,000

              8,000

              10,000

              0

              49,375

              48,131

              46,425

              44,632

              42,785

              40,904

              2,000

              47,375

              60,640

              73,905

              72,444

              70,678

              68,859

              4,000

              45,375

              58,640

              71,905

              85,169

              97,872

              96,114

              6,000

              43,375

              56,640

              69,905

              83,169

              95,872

              94,114

              8,000

              41,375

              54,640

              67,905

              81,169

              93,872

              92,114

              10,000

              39,375

              52,640

              65,905

              79,169

              91,872

              90,114

            9. Obtain optimal result

            Pmax (Mesh = 2000): Maximum profit = 85,169 $

             

          9. Step 2: Mesh = 500
          10.  

            Y: $

            X: $

            5,000

            5,500

            6,000

            6,500

            7,000

            7,500

            2,500

            80,200

            79,777

            79,353

            78,924

            78,489

            78,051

            3,000

            79,733

            82,853

            86,169

            85,926

            85,497

            85,063

            3,500

            79,233

            82,353

            85,669

            88,985

            92,302

            91,988

            4,000

            78,733

            81,853

            85,169

            88,485

            91,802

            95,118

            4,500

            78,233

            81,353

            84,669

            87,985

            91,302

            94,618

            5,000

            77,733

            80,853

            84,169

            87,485

            90,802

            94,118

            Pmax (Mesh = 500): Maximum profit = 88,985 $

             

          11. Step 3: Mesh = 100

        Pmax (Mesh = 100): Maximum profit = 89,949 $

         

      5. Example 4 by Steepest gradient method
        1. Modeling
        2. Rice production farming system in improving stage

          FS01-J by EXCEL file (TE2002p3.xls sheet SGM)

        3. Objective function
        4. Make Total profit(P) maximum

          P = Total sale - Total cost + Capital remained

        5. Optimization
          1. Initial conditions
          2. Assume we can invest $10,000 in the farming system, and starting coverage 6.5 ha, and profit is 39,375$ at starting point.

             

          3. Select variables and constraint
          4. X = Land rent ($), Y = Purchase combine ($) and G = X + Y - 10,000 =< 0

             

          5. Obtain steepest gradient
          6. Seek steepest gradient by setting dX and dY as followings:

             

          7. Calculation step by step
          8. Conditions and factors:

            symbol

            term

            default

            simulation

            unit

            dX

            Incremnt X

            1,000

            1,000

            $

            dY

            Incremnt Y

            1,000

            1,000

            $

            S

            Constant S

            0.001

            0.001

            LR

            Land rent

            585

            585

            $/ha

            dL

            Land area by 1 $

            0.00171

            ha/$

            dE

            EFC increase by 1000 $

            0.00796

            (ha/h) / 1000$

            CAP

            Capital initial

            10,000

            10,000

            $

            Ainitial

            Land initial

            6.5

            6.5

            ha

            PRinitial

            Profit initial

            39,375

            39,375

            $

            CAinitial

            Coverage initial

            6.5

            6.5

            ha

            EFC

            Effective field capacity

            0.06

            0.06

            ha/h

            P

            Total Profit

            49,375

            49,375

            $

            X

            Invest to land

            $

            Y

            Invest to machine

            $

            dP

            Increment P

            $

            Pmax

            Maximum profit

            88,436

            $

            EFC = EFCinitial +dE * Y / 1000

            CA = CAinitial * EFC /EFCinitial

             

          9. Result
            1. Step 1 (dX, dY = 1000) and direction of (dX, dX) = (10, 0), (6, 4), (4, 6), (0, 10)
            2. Pmax: Maximum profit = 88,436 $

            3. Step 2 (dX, dY = 100) and direction of (dX, dX) = (10, 0), (9, 1), (8, 2), ----, (2, 8), (1, 9), (0, 10)

        Pmax: Maximum profit = 89,905 $

         

        Land invest

        Machine invest

        Land rent

        Machine

        Land area

        Coverage

        Machine

        Profit

        Total profit

        Increment P

        Select

        Constraint G

        dX

        dY

        X

        Y

        A

        CA

        EFC

        PR

        P

        dP

        G

        $

        $

        $

        $

        ha

        ha

        ha/h

        $

        $

        $

        Initial

        0

        0

        0

        0

        6.50

        6.50

        0.06

        39,375

        49,375

        0

        -10,000

        1a

        1000

        0

        1,000

        0

        8.21

        6.50

        0.060

        39,375

        48,375

        -1,000

        -9,000

        1b

        600

        400

        600

        400

        7.53

        6.84

        0.063

        42,428

        51,428

        2,053

        -9,000

        1c

        400

        600

        400

        600

        7.18

        7.02

        0.065

        43,955

        52,955

        3,580

        *

        -9,000

        1d

        0

        1000

        0

        1,000

        6.50

        7.36

        0.068

        39,375

        48,375

        -1,000

        -9,000

        1

        400

        600

        400

        600

        7.18

        7.02

        0.065

        43,955

        52,955

        -9,000

        2a

        1000

        0

        1,400

        600

        8.89

        7.02

        0.065

        43,955

        51,955

        -1,000

        -8,000

        2b

        600

        400

        1,000

        1,000

        8.21

        7.36

        0.068

        47,008

        55,008

        2,053

        -8,000

        2c

        400

        600

        800

        1,200

        7.87

        7.53

        0.070

        48,534

        56,534

        3,579

        *

        -8,000

        2d

        0

        1000

        400

        1,600

        7.18

        7.88

        0.073

        45,835

        53,835

        880

        -8,000

        2

        400

        600

        800

        1,200

        7.87

        7.53

        0.070

        48,534

        56,534

        -8,000

        3

        4

        5

        6

        7

        8

        400

        600

        2,800

        5,200

        11.29

        10.98

        0.1014

        79,063

        81,063

        -2,000

        9a

        1000

        0

        3,800

        5,200

        13.00

        10.98

        0.101

        79,063

        80,063

        -1,000

        -1,000

        9b

        600

        400

        3,400

        5,600

        12.31

        11.33

        0.105

        82,116

        83,116

        2,053

        -1,000

        9c

        400

        600

        3,200

        5,800

        11.97

        11.50

        0.106

        83,643

        84,643

        3,580

        *

        -1,000

        9d

        0

        1000

        2,800

        6,200

        11.29

        11.85

        0.109

        82,416

        83,416

        2,353

        -1,000

        9

        400

        600

        3,200

        5,800

        11.97

        11.50

        0.1062

        83,643

        84,643

        -1,000

        10a

        1000

        0

        4,200

        5,800

        13.68

        11.50

        0.106

        83,643

        83,643

        -1,000

        0

        10b

        600

        400

        3,800

        6,200

        13.00

        11.85

        0.109

        86,696

        86,696

        2,053

        0

        10c

        400

        600

        3,600

        6,400

        12.65

        12.02

        0.111

        88,282

        88,282

        3,639

        0

        10d

        0

        1000

        3,200

        6,800

        11.97

        12.36

        0.114

        88,436

        88,436

        3,793

        *

        0

        10

        0

        1000

        3,200

        6,800

        11.97

        12.36

        0.1141

        88,436

        88,436

        0

        dX

        dY

        X

        Y

        A

        CA

        EFC

        PR

        P

        dP

        G

        8

        400

        600

        2,800

        5,200

        11.29

        10.98

        0.1014

        79,063

        81,063

        -2,000

        9a

        1000

        0

        3,800

        5,200

        13.00

        10.98

        0.101

        79,063

        80,063

        -1,000

        -1,000

        9n

        800

        200

        3,600

        5,400

        12.65

        11.16

        0.103

        80,590

        81,590

        527

        -1,000

        9c

        600

        400

        3,400

        5,600

        12.31

        11.33

        0.105

        82,116

        83,116

        2,053

        -1,000

        9d

        400

        600

        3,200

        5,800

        11.97

        11.50

        0.106

        83,643

        84,643

        3,580

        -1,000

        9e

        200

        800

        3,000

        6,000

        11.63

        11.67

        0.108

        85,169

        86,169

        5,106

        *

        -1,000

        9f

        0

        1000

        2,800

        6,200

        11.29

        11.85

        0.109

        82,416

        83,416

        2,353

        -1,000

        9

        400

        600

        3,000

        6,000

        11.63

        11.67

        0.1078

        85,169

        86,169

        -1,000

        10a

        1000

        0

        4,000

        6,000

        13.34

        11.67

        0.108

        83,643

        83,643

        -2,526

        0

        10b

        800

        200

        3,800

        6,200

        13.00

        11.85

        0.109

        85,381

        85,381

        -788

        0

        10c

        600

        400

        3,600

        6,400

        12.65

        12.02

        0.111

        86,696

        86,696

        527

        0

        10d

        400

        600

        3,400

        6,600

        12.31

        12.19

        0.113

        88,282

        88,282

        2,113

        0

        10e

        300

        700

        3,300

        6,700

        12.14

        12.28

        0.113

        89,905

        89,905

        3,736

        *

        0

        10f

        200

        800

        3,200

        6,800

        11.97

        12.36

        0.114

        88,436

        88,436

        2,267

        0

        10g

        100

        900

        3,100

        6,900

        11.80

        12.45

        0.115

        86,967

        86,967

        798

        0

        10h

        0

        1000

        3,000

        7,000

        11.63

        12.54

        0.116

        85,497

        85,497

        -672

        0

        10

        0

        1000

        3,300

        6,700

        12.14

        12.28

        0.1133

        89,905

        89,905

        0

         

         

      6. Example 5 by factors more than two
        1. Modeling
        2. Objective function
        3. Make maximum the total profit of farm work system using simulation or Steepest Gradient System

          Assume capital available 15,000 $ in FS-01-J

        4. Optimization
          1. Initial conditions
          2. Assume we can invest $10,000 in the farming system, and starting coverage 6.5 ha, and profit is 39,375$ at starting point.

             

          3. Select variables and constraint

        X = Land rent ($),

        Y1 = Purchase machine 1 ($)

        Y2 = Purchase machine 2 ($)

        Y3 = Purchase machine 3 ($)

        and X + Y1 + Y2 + Y3 =< 15,000

        Term

        Land

        Machine 1: Combine

        Machine 2: Puddler

        Machine 3:

         

        dX

        dY1

        dY2

        dY3

        Increment

               

        Total profit ($)

               

        This is 4 dimensional problem, therefore, combination of these factors will increase tremendously.

         

         

      7. Example 6 for sustainable farming system
        1. Modeling
        2. Objective function
        3. B = k1 * Y1 + k2 * Y2 + k3 * Y3 + k4 * Y4 + k5 * Y5 + k6 * Y6 + k7 * Y7

          where,

          Symbol

          Term

          unit

          Example: Weight

          B

          Total benefit of system

          -

             

          Y1

          Economical profit of system

          $

           

          41

          Y2

          Ecological pollution of system

          kg

           

          11

          Y3

          Human health (Ergonomics) of system

          -

           

          13

          Y4

          Energetic evaluation

          -

           

          9

          Y5

          Cultural evaluation

          -

           

          7

          Y6

          Social evaluation

          -

           

          10

          Y7

          Political evaluation

          -

           

          9

          Y1i

          Profit of system: initial or basic

          $

             

          Y2i

          Ecological pollution of system: initial or basic

          kg

             

          Y3i

          Human health (Ergonomics) of system: ditto

          -

             

          Y4i etc.

          Initial or basic data, respectively

          -

             

          k1

          Coefficient of Y1

          1 / $

          41 / Y1i

           

          k2

          Coefficient of Y2

          1 / kg

          11 / Y2i

           

          k3

          Coefficient of Y3

          -

          13 / Y3i

           

          k4

          Coefficient of Y4

          -

          9 / Y4i

           

          k5

          Coefficient of Y5

          -

          7 / Y5i

           

          k6

          Coefficient of Y6

          -

          10 / Y6i

           

          k7

          Coefficient of Y7

          -

          9 / Y7i

           
        4. Optimization
          1. Evaluation of each term by respective unit
            1. Economical profit: by $
            2. Example TE2002.xls

            3. Ecological pollution: by CO2 pollution etc.
            4. We may evaluate CO2 input/output by CO2 gas generation ratio or photosynsesis.

            5. Human health (Ergonomics): Metabolic energy required to farm works
            6. Try to evaluate each work by feeling heavy or light

            7. Energy input and output
            8. Example Rice-erg.xls

            9. Cultural, Social and Political evaluation will be done by AHP etc.

             

          2. Normalization of each term
          3. Normalization of B: by arranging weight of k1,k2,k3.

            B will be changed by modifying Y1, Y2, , Y7.

             

          4. Optimization

Obtain maximum B.


return

2004/6/6